Density-Functional Based Tight-Binding: an Approximate DFT Method
نویسندگان
چکیده
O método DFTB, bem como a sua extensão com carga corrigida auto-consistente SCC-DFTB, tem ampliado a faixa de aplicações das ferramentas teóricas com fundamentos bem estabelecidos. Como uma aproximação do método do funcional de densidade, o método DFTB mantém aproximadamente a mesma precisão, mas com custo computacional menor, permitindo a investigação da estrutura eletrônica de sistemas grandes que não podem ser explorados com métodos ab initio convencionais. No presente artigo, os fundamentos dos métodos DFTB, SCC-DFTB e da inclusão das forças de dispersão de London são revisados. Para mostrar um exemplo da aplicabilidade do método DFTB, o equilíbrio zwitteriônico de glicina em solução aquosa é investigado. Foram realizadas simulações de dinâmica molecular usando o hamiltoniano SCC-DFTB corrigido para incluir a dispersão e uma caixa periódica contendo 129 moléculas de água, a partir de uma abordagem puramente mecânico-quântica.
منابع مشابه
Encapsulation of Methane Molecules into C60 Fullerene Nanocage: DFT and DTFB-MD Simulations
Extensive urbanization has greatly raised the demand for cleaner coal- and petroleum-derived fuels. Mainly composed of methane, natural gas represents a promising alternative for this purpose, making its storage a significant topic. In the present research, deposition of methane molecules in C60 fullerene was investigated through a combined approach wherein density functional based tight bindin...
متن کاملEffect of Curvature on the Mechanical Properties of Graphene: A Density Functional Tight-binding Approach
Due to the high cost of experimental analyses, researchers used atomistic modeling methods for predicting the mechanical behavior of the materials in the fields of nanotechnology. In the pre-sent study the Self-Consistent Charge Density Functional Tight-Binding (SCC-DFTB) was used to calculate Young's moduli and average potential energy of the straight and curved graphenes with different curvat...
متن کاملDesign of Biosensors Based Transition-Metal Dichalcogenide for DNA-base Detection: A First-Principles Density Functional Theory Study
The main function purpose of nanobiosensors is to sense a biologically specific material and the kind of sensing platform and doping engineering has been an emerging topic and plays an important role in monolayer molybdenum disulfide (mMoS2). In this paper, we theoretically reveal the electronic structures of mMoS2 doped by 3d transition metals. Furthermore, adsorption of nucleic acid [Adenine ...
متن کاملHydrogen storage capacity of Si-decorated B80 nanocage: firstprinciples DFT calculation and MD simulation
Hydrogen storage capacity of Si-coated B80 fullerene was investigated based on density functional theory calculations within local density approximation and generalized gradient approximation. It is found that Si atom prefer to be attached above the center of pentagon with a binding energy of -5.78 eV. It is inferred that this binding is due to the charge transfer between the Si atom and B80 ca...
متن کاملQuasiatomic orbitals for ab initio tight-binding analysis
Wave functions obtained from plane-wave density-functional theory (DFT) calculations using normconserving pseudopotential, ultrasoft pseudopotential, or projector augmented-wave method are efficiently and robustly transformed into a set of spatially localized nonorthogonal quasiatomic orbitals (QOs) with pseudoangular momentum quantum numbers. We demonstrate that these minimal-basis orbitals ca...
متن کاملDensity Functional Theory Calculations of Functionalized Carbon Nanotubes with Metformin as Vehicles for Drug Delivery
Drug delivery by nanomaterials is an active emergent research area and CNTs draws considerable potential application owing to its unique quasi one-dimensional structure and electronic properties. Single walled carbon nanotubes and carbon fullerenes can be used in drug delivery due to their mechanical and chemical stability. The past few years, increasing attention by several reputed groups has ...
متن کامل